The Structure of o-Bromocarbobenzoxy-glycyl-L-prolyl-L-leucyl-glycyl-L-proline Ethyl Acetate Monohydrate: a Substrate of the Enzyme, Collagenase

By T. Ueki,* S. Bando, T. Ashida and M. Kakudo
Institute for Protein Research, Osaka University, Osaka, Japan

(Received 7 December 1970)

Abstract

The crystal and molecular structure of a synthetic oligopeptide, o-bromocarbobenzoxy-glycyl-prolyl-leucyl-glycyl-proline ethyl acetate monohydrate, has been established by the X-ray diffraction method. The monoclinic crystal belongs to the space group $P 2_{1}$ with $Z=2$. Cell dimensions are $a=13.710$, $b=14.007, c=10 \cdot 861 \AA$ and $\beta=114.60^{\circ}$. As in the case of p-bromocarbobenzoxy-glycyl-prolyl-leucylglycine(tetrapeptide), the peptide chain is folded back at the Pro(1) and Leu residues to form two intramolecular hydrogen bonds between two glycine residues. This folding conformation (called ' $\alpha-U$ folding' in this paper) is almost identical to that in the tetrapeptide. This conformation is found in other oligopeptides and also in some protein structures; hence, it is understood to be one of the specific and stable conformations, in contrast with that proposed for the collagen molecule. In relation to this conformation, the ' β - U-folding' conformation is also discussed. In the crystal structure, intermolecular hydrogen bonds are observed between the peptide bonds of Pro(1)-Leu residues via the water molecule. The ethyl acetate molecule is in the hydrophobic environments. Generally speaking, intermolecular interaction is weak in this crystal, which is consistent with the lower density of the crystal compared with that of tetrapeptide.

Introduction

During a long-range research project in our laboratory to establish the crystal and molecular structures of amino acids, oligopeptides and protein crystals, a series of oligopeptides such as carbobenzoxy (Z)-Gly, Z-Gly-Pro, Z-Gly-Pro-Leu, Z-Gly-Pro-Leu-Gly, Z-Gly-Pro-Leu-Gly-Pro, has been studied by X-ray diffraction methods (Sasada, Tanaka, Ogawa \& Kakudo, 1961 ; Sasada \& Kakudo, 1961 ; Kakudo, Sasada, Katsube, Sakakibara \& Akabori, 1963). These substances were well known especially in connexion with the substrate specificity of the enzymatic reaction of collagenase(Nagai \& Noda, 1959; Nagai, Sakakibara, Noda \& Akabori, 1960; Sakakibara \& Nagai, 1960). Among these peptides, it has been shown that only pentapeptide is subjected to a high degree of specific degradation by collagenase and that the sequence of amino acid residues, -Pro- X-Gly-Pro-, is essentially important for the substrate specificity.

The ORD studies of these peptides showed that a critical difference was observed between two groups: one containing Z-Gly, Z-Gly-Pro, Z-Gly-Pro-Leu and the other Z-Gly-Pro-Leu-Gly, Z-Gly-Pro-Leu-Gly-Pro (Hamaguchi, 1970). This indicates that there must be a substantial difference in the conformation of the molecules in the two groups, while a close similarity may be expected in their conformation of tetra- and penta-peptide.

The X-ray analyses of these peptides afford some structural basis for problems of biochemical aspects,

[^0]and also contribute to the interpretation of optical rotatory dispersion (ORD) and spectroscopic measurements. Furthermore, the establishment of the molecular structures of tetra- and penta-peptide may contribute some basic knowledge to the partial structures of the crystalline region of the collagen molecule. Apart from these interests, comparison of conformation with other peptides such as Ferrichrome A (Zalkin, Forrester \& Templeton, 1966), cyclohexaglycyl (Karle \& Karle, 1963), CysH-Pro-Leu-GlyNH 2 (segment of oxytocin) (Low, Lovell \& Rudko, 1969), and $\left\lceil(\mathrm{Gly})_{4}-(D-\mathrm{Ala})_{2}\right\rceil$ (Karle, Gibson \& Karle, 1970) is important for the structural chemistry of oligopeptides.

Recently, the crystal and molecular structure of Z-Gly-Pro-Leu-Gly was established (Ueki, Ashida, Kakudo, Sasada \& Katsube, 1969), and its conformation was found to be the 'folded' rather than the extended structure, contrary to the expectation from preliminary study (Kakudo et al., 1963). The present paper deals with the crystal and molecular structures of the pentapeptide, o-bromocarbobenzoxy-glycyl-L-prolyl-L-leucyl-glycyl-L-proline which is crystallized with ethyl acetate and a water molecule. The serial numbering of the atoms in a peptide molecule is shown in Fig. 1.*

[^1]
Experimental

The crystals of o-bromocarbobenzoxy-glycyl-L-prolyl-L-leucyl-glycyl-L-proline [$Z(o-\mathrm{Br})-\mathrm{GPLGP}]$ and p -bromocarbobenzoxy-glycyl-L-prolyl-L-leucyl-glycyl-Lproline [$Z(p-\mathrm{Br})$-GPLGP], obtained from the ethyl acetate and water solution, are opaque crystals of ill-defined shape and are both equally poor for diffraction work. Unit-cell dimensions of the crystals are:

```
        \(Z(o-\mathrm{Br})-\mathrm{GPLGP}\)
```

 \(Z(o-\mathrm{Br})-\mathrm{GPLGP}\)
 \(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Br} . \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}\)
 \(\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{Br} . \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} . \mathrm{H}_{2} \mathrm{O}\)
 $a=13.710+0.007 \AA$
$a=13.710+0.007 \AA$
$b=14.007+0.004$
$b=14.007+0.004$
$c=10.861+0.012$
$c=10.861+0.012$
$\beta=114.60+0.02^{\circ}$
$\beta=114.60+0.02^{\circ}$
$Z=2$
$Z=2$
$d_{\mathrm{obs}}=1.33 \mathrm{~g} . \mathrm{cm}^{-3}$.
$d_{\mathrm{obs}}=1.33 \mathrm{~g} . \mathrm{cm}^{-3}$.
$Z(p-\mathrm{Br})$-GPLGP
$Z(p-\mathrm{Br})$-GPLGP
$15.47 \AA$
$15.47 \AA$
14.88
14.88
$21 \cdot 41$
$21 \cdot 41$
120°
120°
4

```
4
```

Both crystals are monoclinic, with space group $P 2_{1}$. In $Z(p-\mathrm{Br})$-GPLGP the dimension of the c axis is nearly twice that in $Z(o-\mathrm{Br})$-GPLGP, and the former contains two molecules in an asymmetric unit. The characteristic diffraction pattern in $Z(p-\mathrm{Br})$-GPLGP, however, is that the reflexions with l odd indices are very weak. This fact suggests that the locations of the two crystallographically independent molecules along the c axis are very closely related as z and $z+\frac{1}{2}$. This situation was also observed in gramicidin S (Schmidt, Hodgkin \& Oughton, 1957), cytochrome c from bonito heart (Ashida, Ueki, Tsukihara, Sugihara, Takano \& Kakudo, 1971) and in cyclohexaglycyl; the structure analyses of this type of crystal usually suffer in detecting the small differences of nearly identical molecules responsible for the weak l-odd reflexions. In these
cases, structure analyses that ignore these weak reflexions result in the averaged structure of nearly identical molecules. In the present case, it is also suggested that both crystals may be isostructural with respect to the molecular conformation of the peptide. Accordingly, we carried out the structure analysis of $Z(o-\mathrm{Br})$-GPLGP and avoided the difficulties in $Z(p-$ $\mathrm{Br})$-GPLGP due to the weak l odd reflexions.

Only one piece of the crystal was available. It was large in size $(0.29 \times 0.77 \times 0.48 \mathrm{~mm})$ and, though poor for diffraction work, was used throughout the experiments. Unit-cell dimensions were determined on the diffractometer by using $\mathrm{Cu} K \alpha$ radiation $(\lambda=1 \cdot 5418 \AA)$. All measurements were done on the automatic fourcircle diffractometer controlled by an Aicom C-2 computer with 8 K core memory (this system is called Rigaku AFC-II).

The molecular weight in an asymmetric unit calculated from the crystal data is 759 , which is less than the weight of the chemical formula cited above. This suggests that some part of the crystalline solvents (ethyl acetate or water) was lost in this crystal, as is often observed in cases of opaque crystals.

Intensity data were collected using $\mathrm{Cu} K \alpha$ radiation monochromatized by a nickel foil of proper thickness, with a scintillation counter connected to a pulse-height analyser. Measurements were controlled automatically under the following conditions:
Range of measurement: $(\sin \theta / \lambda)$ less than $0.562 \AA^{-1}$ Method of scanning: continuous $\omega-2 \theta$ scan Scanning range: $\quad \Delta(2 \theta)=2.00^{\circ}+0.40^{\circ} \tan \theta$. Attenuators of nickel foil were used to maintain measurements within the linear region of the scintillation counter. A total of 2910 independent reflexions was measured, within the quadrant of the measuring

Fig. 1. Serial numbering of atoms in a peptide molecule.
sphere, in five days. During measurement the 080 reflexion was monitored to inspect the deterioration of the crystal by X-rays or the change of the setting parameters. The change in intensity of this reflexion was about 13% in total. This change occurred almost linearly with time, and the intensity data were corrected correspondingly. The absorption correction was not made, though it was needed for this large crystal.

Structure analysis

The parameters of the bromine atom were easily found in the Patterson maps sharpened with $B=4.0 \AA^{2}$.

Using these parameters, the heavy-atom Fourier synthesis and minimum function maps were obtained. The superposition of these maps revealed the phenyl group and $C(7)$ atom. Subsequently, these atoms were included in the least-squares calculation followed by the Fourier summation. More than 10 steps were needed to yield the positions of the light atoms in the peptide chain; in each step, atoms whose temperature factors became unreasonably large after the leastsquares calculation were discarded in calculating the phases of the Fourier summation, and a new set of atoms was picked up in the Fourier maps for the next step. After the atomic positions of the peptide chain

Table 1. Positional parameters (fractional) with e.s.d.'s $\left(\AA \times 10^{3}\right)$ in parentheses and isotropic thermal parameters

	x	y	z	B	
Br	0.0371 (3)	$0 \cdot 2500$ (4)	$0 \cdot 1495$ (3)	8.8*	
C(1)	$0 \cdot 1158$ (21)	$0 \cdot 1631$ (22)	0.0827 (21)	$6 \cdot 1$	$Z-\mathrm{C}(1)$
C(2)	$0 \cdot 1699$ (22)	$0 \cdot 2067$ (22)	0.0198 (22)	$6 \cdot 7$	$Z-\mathrm{C}(2)$
C(3)	$0 \cdot 2244$ (26)	$0 \cdot 1433$ (27)	-0.0313 (26)	$7 \cdot 9$	$Z-\mathrm{C}(3)$
C(4)	$0 \cdot 2300$ (23)	0.0488 (25)	-0.0130 (23)	$7 \cdot 0$	$Z-\mathrm{C}(4)$
C(5)	$0 \cdot 1755$ (25)	0.0073 (26)	0.0553 (25)	$8 \cdot 1$	$Z-\mathrm{C}(5)$
C(6)	0.1115 (20)	0.0719 (20)	$0 \cdot 1033$ (20)	$5 \cdot 7$	$\underline{-C}(6)$
C(7)	0.0639 (23)	0.0234 (24)	$0 \cdot 1992$ (23)	$6 \cdot 9$	$Z-\mathrm{C}(7)$
C(8)	-0.1132 (20)	0.0222 (20)	$0 \cdot 1907$ (20)	$5 \cdot 5$	$Z-\mathrm{C}$ (8)
C(9)	-0.2869 (16)	0.0146 (17)	$0 \cdot 1800$ (16)	$4 \cdot 0$	$\mathrm{gly}(1) \mathrm{C}_{2}$
C(10)	-0.3389 (15)	-0.0775 (16)	$0 \cdot 1276$ (16)	$3 \cdot 5$	gly(1) C^{\prime}
$\mathrm{C}(1)$	-0.4692 (15)	-0.1997(15)	$0 \cdot 1197$ (15)	$3 \cdot 4$	pro(1) C_{α}
C(12)	-0.5734 (19)	-0.1942 (20)	0.1541 (20)	$5 \cdot 3$	$\mathrm{pro}(1) \mathrm{C}_{\boldsymbol{\beta}}$
C(13)	-0.5481 (22)	-0.1090 (22)	$0 \cdot 2516$ (22)	$6 \cdot 3$	pro(1) C_{y}
C(14)	-0.4724 (17)	-0.0416 (17)	$0 \cdot 2210$ (17)	$4 \cdot 3$	$\mathrm{pro}(1) \mathrm{C}_{\delta}$
C(15)	-0.5128 (15)	-0.2280 (15)	-0.0339 (14)	$3 \cdot 3$	pro(1) C^{\prime}
C(16)	-0.5940 (17)	-0.1759 (17)	-0.2712 (17)	$4 \cdot 2$	${ }_{\text {leuC }}{ }^{\text {a }}$
$\mathrm{C}(17)$	-0.6932 (18)	-0.1178 (18)	-0.3465 (18)	$4 \cdot 6$	$\underline{\text { leuC }}{ }_{\beta}$
$\mathrm{C}(18)$	-0.7839 (20)	-0.1435 (21)	-0.2982 (20)	$5 \cdot 7$	leuC ${ }^{\text {r }}$
$\mathrm{C}(19)$	-0.8189 (26)	-0.2395 (32)	-0.3250 (27)	9.5	$\mathrm{leuC}{ }_{\delta}(1)$
C (20)	-0.8785 (30)	-0.0798 (30)	-0.3795 (30)	$9 \cdot 5$	$\mathrm{leuC}_{\delta}(2)$
C(21)	-0.5067 (16)	-0.1483 (16)	-0.3239 (16)	$3 \cdot 7$	leuC' ${ }^{\prime}$
C(22)	-0.3296 (17)	-0.0954 (17)	-0.2870 (17)	$4 \cdot 2$	$\operatorname{gly}(2) \mathrm{C}_{2}$
C(23)	-0.2961 (14)	0.0078 (15)	-0.2464 (14)	$3 \cdot 0$	$\operatorname{gly}(2) \mathrm{C}^{\prime}$
C(24)	-0.1831 (19)	$0 \cdot 1443$ (16)	-0.2489 (17)	4.1*	pro(2) C_{α}
C(25)	-0.0836 (17)	$0 \cdot 1438$ (18)	-0.2812 (18)	4.6*	$\mathrm{pro}(2) \mathrm{C}_{\beta}$
C(26)	-0.1087 (21)	0.0736 (19)	-0.3891 (24)	4.6*	pro(2)C,
C(27)	-0.1710 (20)	-0.0117 (18)	-0.3587 (21)	4.0*	$\mathrm{pro}(2) \mathrm{C}_{\delta}$
C(28)	-0.2673 (31)	$0 \cdot 2116$ (20)	-0.3425 (34)	5.5*	pro(2) ${ }^{\prime}$
C(29)	$0 \cdot 1326$ (27)	$0 \cdot 2200$ (41)	$0 \cdot 5673$ (30)	8.7*	EA-C(1) \dagger
C(30)	$0 \cdot 2350$ (24)	0.2273 (30)	$0 \cdot 5440$ (23)	7-2\%	EA-C(2)
C(31)	0.3747 (36)	$0 \cdot 1549$ (33)	0.5085 (36)	6.9*	EA-C(3)
C(32)	$0 \cdot 3754$ (34)	$0 \cdot 1006$ (34)	$0 \cdot 4238$ (34)	7.2*	EA-C(4)
$\mathrm{N}(1)$	-0.2119 (14)	0.0411 (14)	$0 \cdot 1208$ (14)	$4 \cdot 4$	gly(1)N
N(2)	-0.4256 (12)	-0.0998 (12)	$0 \cdot 1478$ (12)	$3 \cdot 4$	pro(1)N
N(3)	-0.5478 (12)	-0.1537 (12)	-0.1240 (12)	$3 \cdot 0$	leuN
N(4)	-0.4102 (13)	-0.1242 (13)	-0.2402 (13)	$3 \cdot 7$	$\operatorname{gly}(2) \mathrm{N}$
N(5)	-0.2208 (11)	$0 \cdot 0455$ (12)	-0.2771 (11)	3.2*	pro(2)N
$\mathrm{O}(1)$	-0.0524 (13)	$0 \cdot 0328$ (14)	$0 \cdot 1167$ (13)	5.9	$Z-\mathrm{O}(1)$
$\mathrm{O}(2)$	-0.0669 (16)	-0.0041 (17)	$0 \cdot 3113$ (16)	$7 \cdot 7$	$Z-\mathrm{O}(2)$
$\mathrm{O}(3)$	-0.3061 (11)	-0.1344 (11)	$0 \cdot 0630$ (11)	$4 \cdot 1$	gly(1)O
$\mathrm{O}(4)$	-0.5166 (11)	-0.3119 (11)	-0.0642 (11)	$4 \cdot 1$	pro(1)O
$\mathrm{O}(5)$	-0.5358 (15)	-0.1561 (15)	-0.4472 (15)	$7 \cdot 0$	leuO
O(6)	-0.3375 (12)	0.0577 (12)	-0.1827 (12)	$4 \cdot 8$	gly(2)O
$\mathrm{O}(7)$	-0.3379 (16)	$0 \cdot 1854$ (17)	-0.4347 (19)	9.3*	pro(2)O(1)
$\mathrm{O}(8)$	-0.2527 (25)	$0 \cdot 2962$ (16)	-0.2938 (28)	8.3*	pro(2)O(2)
$\mathrm{O}(9)$	0.2781 (20)	$0 \cdot 3041$ (18)	0.5597 (18)	7.3*	EA-O(1)
$\mathrm{O}(10)$	$0 \cdot 2709$ (18)	$0 \cdot 1532$ (19)	0.5198 (21)	6.4*	EA-O(2)
O(11)	-0.5193 (12)	$0 \cdot 0442$ (12)	-0.1218 (12)	$5 \cdot 0$	water

were obtained, the position of $O(11)$ of water and atoms of ethyl acetate were found in the Fourier maps; the peaks belonging to ethyl acetate were very low and diffused in the maps [even in the final Fourier maps, peak heights of carbon atoms in this molecule were $2 \cdot 3,3 \cdot 4,2 \cdot 5$ and $2.4 \mathrm{e} . \AA^{-3}$, while those in the peptide chain were from 5.6 to 6.8 e.\AA^{-3} except for atoms in $\operatorname{Pro}(2)]$.

The least-squares refinement including all atoms with isotropic thermal parameters resulted in $R=14.6 \%$, where the occupancies of atoms in the ethyl acetate molecule were tentatively assigned as 0.75 since some molecules in the crystal were estimated to be randomly lost. A trial to refine the occupancies was not made. The difference Fourier synthesis at this stage gave a number of high peaks in the maps, indicating a high degree of anisotropic thermal vibrations or disorder. Among these peaks two had heights more than 1.0 e. \AA^{-3} at the positions very close to the carboxyl group of Pro(2).

Finally, a refinement with anisotropic thermal parameters for bromine, and atoms of the Pro(2) residue and ethyl acetate resulted in a fairly good convergence of parameters. Even at this stage, many peaks existed around the carboxyl atoms of Pro(2) residue and ethyl acetate in the difference Fourier maps.

Positions of the hydrogen atoms were found for the peptide chain (except for those at the carboxyl group of Pro(2) residue and the methyl groups of Leu residue) and the water molecule in the difference Fourier maps by referring to the calculated positions. Peak heights in the maps of these hydrogen atoms ranged from 0.19 to 0.52 e. \AA^{-3}. The final R value was 11.6% (hydrogen atoms were not included in the refinements).

Final parameters of all atoms are listed in Tables 1, $2 \& 3$. Atomic parameters of the $\mathrm{C}_{\gamma}, \mathrm{C}_{\delta}, \mathrm{C}^{\prime}, \mathrm{O}(7)$ and $\mathrm{O}(8)$ atoms are especially affected by the disordering, as can be seen from the anisotropic thermal param-

Fig. 2. Crystal structure viewed down the b axis. Hydrogen bonds are drawn in heavy dotted lines, some intermolecular short contacts in thin broken lines.

Fig. 3. Part of the crystal structure, as viewed along the a axis.
eters listed in Table 2. Observed and calculated structure factors are tabulated in Table 4. Most calculations were carried out on the HITAC 5020E computer, University of Tokyo, by using the programs written by one of the authors (Ashida, 1967). The block-diagonal approximation was used in the leastsquares calculation, in which all intensity data were used with unit weight. Atomic scattering factors were taken from International Tables for X-Ray Crystallography (1962). Anomalous dispersion terms were not included in the calculations.

Table 2. Anisotropic thermal parameters $\left(\times 10^{4}\right)^{*}$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Br	181	143	299	-31	256	-147
$\mathrm{C}(24)$	119	51	143	-51	152	-17
$\mathrm{C}(25)$	73	75	176	-52	117	5
$\mathrm{C}(26)$	129	76	309	1	334	24
$\mathrm{C}(27)$	135	67	234	18	290	-6
$\mathrm{C}(28)$	308	66	600	83	807	153
$\mathrm{C}(29)$	100	224	205	58	178	129
$\mathrm{C}(30)$	87	130	116	-55	12	131
$\mathrm{C}(31)$	175	105	316	-116	314	-120
$\mathrm{C}(32)$	162	128	250	-75	249	-120
$\mathrm{~N}(5)$	58	64	94	6	84	-8
$\mathrm{O}(7)$	131	151	353	59	214	298
$\mathrm{O}(8)$	376	68	736	77	877	163
$\mathrm{O}(9)$	145	95	150	-8	73	40
$\mathrm{O}(10)$	105	81	255	-17	144	25

[^2]Table 3. Positional parameters of hydrogen atoms
Parameters are taken from the difference Fourier maps.

	x	y	z	Bonded to
H(1)	$0 \cdot 14$	$0 \cdot 24$	$0 \cdot 00$	C(2)
H(2)	$0 \cdot 20$	$0 \cdot 18$	-0.04	C(3)
H(3)	$0 \cdot 26$	0.00	-0.04	C(4)
H(4)	$0 \cdot 18$	-0.06	0.06	C(5)
H(5)	0.08	0.04	$0 \cdot 30$	C(7)
H(6)	0.06	-0.04	$0 \cdot 18$	C(7)
H(7)	-0.24	0.06	$0 \cdot 02$	N(1)
H(8)	-0.34	0.06	$0 \cdot 14$	C(9)
H(9)	-0.24	0.00	$0 \cdot 24$	C(9)
H(10)	-0.52	$0 \cdot 02$	$0 \cdot 20$	C(14)
H(11)	-0.40	-0.02	$0 \cdot 26$	C(14)
H(12)	-0.62	-0.08	$0 \cdot 26$	C(13)
H(13)	-0.50	-0.12	$0 \cdot 30$	C(13)
H(14)	-0.62	-0.16	$0 \cdot 10$	C(12)
H(15)	-0.54	-0.26	$0 \cdot 20$	C(12)
H(16)	-0.42	-0.26	$0 \cdot 18$	C(11)
H(17)	-0.54	-0.10	-0.10	N(3)
H(18)	-0.60	-0.24	-0.28	C(16)
H(19)	-0.72	-0.14	-0.42	C(17)
H(20)	-0.70	-0.08	-0.32	C(17)
H(21)	-0.76	-0.12	-0.22	C(18)
H(22)	-0.38	-0.16	-0.20	N(4)
H(23)	-0.28	-0.14	-0.24	C(22)
H(24)	-0.38	-0.08	-0.36	C(22)
H(25)	-0.18	$0 \cdot 14$	-0.18	C(24)
H(26)	0.00	$0 \cdot 14$	-0.20	C(25)
H(27)	-0.08	0.20	-0.30	C(25)
H(28)	-0.02	0.06	-0.40	C(26)
H(29)	-0.14	0.06	-0.42	C(26)
H(30)	-0.24	-0.02	-0.52	C(27)
H(31)	-0.10	-0.06	-0.30	C(27)
H(32)	-0.42	0.06	-0.16	O(11) water
H(33)	-0.56	$0 \cdot 12$	$-0 \cdot 12$	O(11) water

Crystal structure and intermolecular hydrogen bonds

The peptide molecule is schematically approximated as a thick sheet, roughly perpendicular to the b axis, on which a ' U '-shaped peptide chain lies. Sheets are stacked with each other by the twofold screw axis. In this stacking structure, hydrophobic parts of the molecules (phenyl and pyrrolidine groups) contact each other between neighbouring molecules; hydrophilic parts (peptide groups between $\operatorname{Pro(1)}$ and Leu residues) interact with the upper and lower ones via water molecules located between these molecules. The arrangement of the molecules in the crystal is shown in Fig. 2 (viewed down the b axis) and in Fig. 3 (viewed down the a axis). Fig. 4 shows an enlarged and modified part of Fig. 2 looking along the twofold screw axis.

Van der Waals contacts

As seen in Fig. 2, the carbobenzoxy group seems fairly free; it has the closest contacts with $\mathrm{O}(3)$ of the Gly(1) residue, within $3.5 \AA$ and close van der Waals contacts with the pyrrolidine rings of $\operatorname{Pro(2)}$ of the adjacent molecule. These facts are in accordance with the high-temperature factors of the atoms in the phenyl group. The side chain of the Leu residue is also free; atoms in this side chain have quite high temperature factors ($9 \cdot 5 \AA^{2}$ for the two C_{δ} atoms).

Note that the pyrrolidine ring of $\operatorname{Pro}(1)$ residue has contacts mainly with the oxygen atoms, $\mathrm{O}(8), \mathrm{O}(5)$ and the $\mathrm{O}(9)$ of ethyl acetate within $3 \cdot 5 \AA$. The pyrrolidine ring of the Pro(2) residue has a few short contacts with the neighbouring molecules. The only one strong interaction of $\operatorname{Pro}(2)$ is the hydrogen bond. As a result, the carboxyl group of $\operatorname{Pro}(2)$ residue retains some freedom of rotation around this hydrogen bond, causing severe disorder on these atoms.

The crystalline solvent (ethyl acetate molecules) is surrounded by the hydrophobic group, such as the side chain of the Leu residue and the pyrrolidine rings of proline residues. Of the atoms in ethyl acetate, only the oxygen atom of the carbonyl group has shorter contacts with other atoms.

Hydrogen bonds

The water molecule is situated in the middle of the two peptide bonds of Pro(1)-Leu, which are related by the twofold screw axis; it is located very closely to the screw axis. Two hydrogen atoms of the water molecule

Table 4. Observe and calculated structure factors (on absolute scale)

point toward $\mathrm{O}\left(4^{\prime}\right)$ of $\operatorname{Pro}\left(1^{\prime}\right)$ of the upper molecule and $\mathrm{O}(6)$ of $\mathrm{Gly}(2)$ of the lower molecule; angle $\mathrm{O}(4)--\mathrm{H}-\mathrm{O}(11)-\mathrm{H}--\mathrm{O}(6), 103^{\circ}$, is quite satisfactory. The $\mathrm{O}(11)$ atom is also an acceptor of the hydrogen bond from $\mathrm{N}(3)$ of the Leu residue in the lower molecule. As a result of these three hydrogen bonds, the two peptide bonds, which are on the corner of the U folding, are strongly interconnected. Interaction between the molecules is strong in this part of the crystal.

In the hydrogen bonds between the carboxyl group of Pro(2) and the carbonyl group of the Leu residue, the $\mathrm{O}(7)$ atom may be the donor, though the bond distance, $\mathrm{C}(28)-\mathrm{O}(7)$, is $1 \cdot 12 \AA$ and the other, $\mathrm{C}(28)-$ $\mathrm{O}(8)$, is $1.28 \AA$. The reason is that the $\mathrm{O}(7)--\mathrm{O}\left(5^{\prime}\right)$ distance is $2.78 \AA$ while $\mathrm{O}(8)--\mathrm{O}\left(5^{\prime}\right)$ is $3.17 \AA$, and also the angles, $\mathrm{C}(28)-\mathrm{O}(7)--\mathrm{O}\left(5^{\prime}\right)$ and $\mathrm{C}(28)-$ $\mathrm{O}(8)--\mathrm{O}\left(5^{\prime}\right)$, are 107 and 84°, respectively. The conflict in bond distances is due to the disorder observed in this carboxyl group. Angles of intra- and intermolecular hydrogen bonds are given in Fig. 5.

Description of the molecular structure

The ethyl acetate molecule suffers from disorder, as indicated by the anomalous anisotropic thermal parameters. Hence, dimensions in the molecule have large deviations from those so far reported. They are shown in Fig. 6(c).

Geometry of amino acid residues

Bond lengths and angles in the peptide molecule are shown in Fig. 6. Because of the disorder or highly anisotropic thermal vibrations even for the atoms treated as isotropic to save the machine time of the computer, the estimated standard deviations for the non-heavy atoms range from $0.015 \AA$ to about $0.05 \AA$ for the atoms apparently having disorder. Those for the peptide bonds in this molecule are as follows.

Fig. 4. Enlarged and modified part of Fig. 2, showing the hydrogen-bond system along the b axis.

	Present	Corey \& Pauling (1953)	Average*
$\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ distance	$1.53 \AA$	$1.53 \AA$	$1.528 \AA$
$\mathrm{C}^{\prime}-\mathrm{O}$	1.25	$1 \cdot 24$	1.236
$\mathrm{C}^{\prime}-\mathrm{N}$	$1 \cdot 32$	$1 \cdot 32$	$1 \cdot 321$
$\mathrm{N}-\mathrm{C}_{\alpha}^{\prime}$	$1 \cdot 47$	$1 \cdot 47$	1.459
$\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}-\mathrm{O}$ angle	$119{ }^{\circ}$	114°	$114.7{ }^{\circ}$
$\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}-\mathrm{N}$	120	121	$119 \cdot 8$
$\mathrm{O}-\mathrm{C}^{\prime}-\mathrm{N}$	123	125	$125 \cdot 3$
$\mathrm{C}^{\prime}-\mathrm{N}-\mathrm{C}_{\alpha}^{\prime}$	119	123	$121 \cdot 1$

These values are very reasonable except angle $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}-\mathrm{O}$. The best planes of the peptide bonds listed in Table 5 indicated that these peptide bonds have good planarity except for the first peptide bond between the carbobenzoxy group and Gly(1) residue.

The geometry of the pyrrolidine rings in Pro(1) and $\operatorname{Pro}(2)$ residues is very similar to those so far

* Averages are estimated from the dimensions of the peptide bonds so far determined by the three-dimensional structure analyses (14 crystals).
reported. In the rings, the four atoms, $\mathrm{N}, \mathrm{C}_{\alpha}, \mathrm{C}_{\boldsymbol{\beta}} \mathrm{C}_{\delta}$, are nearly coplanar, and the displacements of the C_{y} atoms from these planes are $0.41 \AA$ for Pro(1) and $0.49 \AA$ for $\operatorname{Pro}(2)$ residue, respectively. The carbon atom of the amide group, $\operatorname{Pro}(1) \mathrm{C}^{\prime}$, is located in the opposite direction to the C_{y} atom with respect to the plane, while in the $\operatorname{Pro}(2)$ residue the C_{γ} and C^{\prime} atoms are in the same direction. The disorder in C_{γ} atoms is not observed, as in the Z-GPLG peptide (Ueki et al., 1969), and this is in contrast to the crystal of L-Leu-L-Pro-Gly (Leung \& Marsh, 1958) in which the disorder in the C_{y} atom was detected.

An interesting feature observed in Z-GPLG peptide, $i . e$. the widening of angle $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}$ in the Leu residue, is not observed in the present case. It has the usual value of 111°. The reason for it is not yet clear. This result might be due to the experimental error.

As pointed out for the structure of the Z-GPLG molecule, the present molecule also has its $\mathrm{C}_{\alpha}-\mathrm{H}$ bond cis to the $\mathrm{C}^{\prime}=\mathrm{O}$ bond with respect to the $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ bond in the Pro(1) residue (Fig. 7). This conformation was found in myoglobin (Kendrew, 1963) and lysozyme structures (Blake, Mair, North, Phillips \& Sarma,

Fig. 5. Angles in the hydrogen bond system.

(a)

(c)

Fig. 6. Peptide molecule showing (a) bond distances, (b) bond angles. Bond distances and angles in ethyl acetate molecule are shown in (c).
1967), but was not found in polyproline II (Cowan \& McGavin, 1955), in the model of collagen (Ramachandran \& Sasisekharan, 1965), or in Leu-Pro-Gly and tosyl-L-Pro-L-HyPro (Fridrichsons \& Mathieson, 1962). Therefore, this conformation seems to occur in a certain oligopeptide having a particular conformation, as discussed later. In a previous paper, we suggested that this conformation may, somehow, have a correlation with the difference in the substrate specificity of
the tetra- and penta-peptide to the reaction of collagenase. The present analysis, however, revealed that this conformation occured in the pentapeptide as well, in spite of the difference in biochemical behavior of these peptides.

As far as the $\operatorname{Pro}(2)$ residue is concerned, the molecular dimensions are not usable for considering any precision, because of the disorder as stated previously.

Conformation of the peptide molecule

The most important feature of the molecule is the folding of the chain at the Pro(1) and Leu residues. This folding structure is constructed by rotating around the bonds of $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ in the $\operatorname{Pro(1)}$ and of $\mathrm{N}-\mathrm{C}_{\alpha}$ in the Leu residue from the chain's fully extended conformation. From a qualitative consideration, rotation of either of these bonds seems to result in four different types of structures, keeping other bonds unchanged:
(1) Structure as the present molecule, which is stabilized by the intrachain hydrogen bonds [Fig. 8(c)].
(2) Structure with either of these bonds rotated by 180° (if the $\mathrm{C}_{x}-\mathrm{C}^{\prime}$ bond is rotated, the $\mathrm{C}_{\alpha}-\mathrm{H}$ bond becomes trans to the $\mathrm{C}^{\prime}=\mathrm{O}$ bond with respect to the $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ bond, which is seen in the structures of collagen and polyproline II); in this structure, the bulky hydrophobic side chain of the Leu residue may produce the repulsive interaction with the Gly (1) residue; hence, this structure seems unstable.
(3) Twisted structure in which either of these bonds is rotated by an angle between 0 and 180°; this rotation results in an intermediate structure between (1) and (2).
(4) Structure in which both bonds are rotated by about 180°, which gives a structure similar to (1) with two intrachain hydrogen bonds. In this structure, the $\mathrm{C}_{\alpha}-\mathrm{H}$ bond is trans to the $\mathrm{C}^{\prime}=\mathrm{O}$ with respect to the $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ bond.

For the peptide with a sequence such as (-Pro-amino acid with bulky side chain-) the folded conformation in (1) and (4) may be favoured. These conformations are discussed later in comparison with other peptide molecules.

Distances of the intrachain hydrogen bonds are: Gly(1)N-H---Gly(2)O, $3.03 \AA$, and Gly(1)O---H$\operatorname{Gly}(2) \mathrm{N}, 3.00 \AA$. These two hydrogen bonds greatly stabilize this folded conformation, which together with the hydrogen bonds seems to be the antiparallel pleated-sheet structure (β-structure). However, the location of the C_{α} atoms of Gly(1) and Gly(2) residues are not in the same direction with respect to the hydrogen bonds; one is above the hydrogen bond and the other below it. Interatomic short contacts in the chain (less than $3.5 \AA$) are shown in Fig. 9.
Between the conformation of Z-GPLG and ZGPLGP, a remarkable difference is observed in the internal rotation angle of the $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ bond of the $\mathrm{Gly}(\mathrm{I})$ residue which causes the hydrogen atom of Gly(1)N to stick inside the chain of Z-GPLGP (see internal rotation angles in Fig. 10). This makes the additional hydrogen bond possible between Gly(1)N-H---Gly(2)O.

Orientation of the carbobenzoxy group is different in both molecules; the φ value of $\operatorname{Gly}(1)$ is 83° in Z GPLGP and 271° in Z-GPLG. This indicates about 180° difference in internal rotation angle in these molecules. As a result, the $Z-\mathrm{O}(2)$ atom is outside the chain in Z-GPLGP, but is inside the chain in Z GPLG.

U-folding, special conformation in peptide chains

In the previous paper on Z-GPLG, comparisons of conformations of amino acid residues and peptide
chains with those of cyclohexaglycyl, Ferrichrome A, lysozyme, carboxypeptidase and myoglobin were described, and we pointed out some common features of the conformation in these structures. The present structure analysis makes it possible to discuss this point further. In the present case, a comparison was made by drawings of the peptide chains projected on a special plane, and also by the internal rotation angles, as shown in Fig. 8(a), (b), (c), and (d) for Z-GPLGP, cyclohexaglycyl, Z-GPLGP and Ferrichrome A, respectively. It is surprising to note that the Z-GPLGP and Z-GPLG representations can be

Table 5. Best planes, dihedral angles between the planes, and displacements from the planes
(a) Equations of the best planes \dagger

$$
\begin{array}{ccl}
\text { I } & 0.0234 X-0.9533 Y-0.3011 Z=-0.9018 & \text { peptide } Z \text {-gly(1) } \\
\text { II } & -0.2531 X+0.4457 Y-0.8587 Z=-0.2376 & \text { peptide gly(1)-pro(1) } \\
\text { III } & 0.9963 X+0.0835 Y+0.0215 Z=-7.1424 & \text { peptide pro(1)-leu } \\
\text { IV } & -0.2984 X+0.9520 Y-0.0998 Z=-0.0828 & \text { peptide leu-gly(2) } \\
\text { V } & 0.3892 X-0.3122 Y+0.8666 Z=-3.2894 & \text { peptide gly } 2) \text { pro(2) } \\
\text { VI } & -0.8302 X-0.1873 Y+0.5250 Z=-0.5366 & \text { carboxyl pro(2) } \\
\text { VII } & -0.5138 X-0.1229 Y-0.8491 Z=-1.6199 & \text { phenyl group } \\
\text { VIII } & -0.2195 X+0.3611 Y-0.9063 Z=-0.4971 & \text { pro(1) ring } \\
\text { IX } & 0.2704 X-0.3730 Y+0.8875 Z=-3.2299 & \text { pro(2) ring } \\
\text { H Coordinates }(X, Y, Z) \text { in } \AA \text { are referred to the orthogonal axes, } a, b, \text { and } c^{*} .
\end{array}
$$

(b) Dihedral angles $\left({ }^{\circ}\right)$ between the planes

	I	II	III	IV	V	VI
II	-	100	94	152	87	90
II		-	104	54	169	109
IIV			-	102	68	146
V				-	120	89
V						79

(c) Displacements (\AA) of atoms from the planes

I	II			III	
$Z-\mathrm{O}(1)$	0.087	Gly(1) C_{α}	0.004	$\operatorname{Pro}(1) \mathrm{C}_{\alpha}$	-0.014
$Z-\mathrm{C}$ (8)	-0.019	Gly(1) C_{β}	-0.006	Pro(1) ${ }^{\prime}$	0.018
$Z-\mathrm{O}(2)$	-0.023	Gly(1)O	0.000	Pro(1)O	-0.002
Gly(1)N	-0.087	Pro(1)N	0.007	LeuN	0.012
Gly(1) C_{x}	0.061	Pro(1) C_{δ}	-0.004	LeuC ${ }_{\text {a }}$	-0.013
$Z-\mathrm{C}(7)^{*}$	-0.003	$\operatorname{Pro}(1) \mathrm{C}_{\alpha}{ }^{*}$	-0.259	Pro(1) ${ }^{*}$ *	0.579
Gly(1) $\mathrm{C}_{\beta}{ }^{*}$	1.434	Gly(1) ${ }^{*}$	$0 \cdot 343$	$\operatorname{Pro}(1) \mathrm{C}_{B^{*}}{ }^{\text {a }}$	-1.578
		Pro(1) C^{*}	$0 \cdot 842$	$\mathrm{LeuC}_{\beta}{ }^{*}$	-0.977
		$\operatorname{Pro(1)C} \mathrm{C}^{*}{ }^{*}$	-0.116	LeuC γ^{*}	-2.453
IV		V		VI	
LeuC_{α}	0.007	$\mathrm{Gly}(2) \mathrm{C}_{\alpha}$	-0.003	Pro(2) C_{α}	0.018
LeuC'	0.012	Gly(2) C_{β}	0.001	Pro(2) ${ }^{\prime}$	-0.036
LeuO	-0.017	Gly(2)O	-0.006	Pro(2)O(2)	0.012
Gly(2)N	-0.024	Pro(2)N	0.029	Pro(2)O(1)	0.010
Gly(2) C_{α}	0.026	Pro(2) C_{α}	-0.010	$\operatorname{Pro}(2) \mathrm{N}^{*}$	$0 \cdot 455$
LeuN*	$0 \cdot 167$	Pro(2) C_{δ}	-0.011		
LeuC ${ }^{*}{ }^{*}$	$1 \cdot 151$	Gly(2) ${ }^{*}$	0.011		
$\mathrm{Gly}(2) \mathrm{C}_{\beta}$	$1 \cdot 282$	$\operatorname{Pro}(2) \mathrm{C}_{\beta}{ }^{*}$	0.303		
VII		VIII		IX	
Br	0.022	Pro(1)N	0.096	Pro(2)N	0.084
$Z-\mathrm{C}(1)$	0.022	$\operatorname{Pro}(1) \mathrm{C}_{\alpha}$	-0.053	Pro(2) C_{α}	-0.079
\boldsymbol{Z}-C(2)	-0.052	Pro(1) C_{β}	0.014	Pro(2) C_{β}	0.048
$Z-\mathrm{C}(3)$	-0.018	Pro(1) C_{δ}	-0.050	Pro(2)C δ	-0.049
\boldsymbol{Z}-C(4)	-0.006	Pro(1) $\mathrm{C}_{\boldsymbol{\gamma}}{ }^{*}$	-0.407	Pro(2) $\mathrm{C}{ }^{*}$	-0.493
$Z-\mathrm{C}(5)$	0.036	Gly(1) C^{*}	$0 \cdot 110$	Pro(2) $\mathrm{C}^{\prime *}$	-1.449
$Z-\mathrm{C}(6)$	0.084	Gly(1)O*	$0 \cdot 239$	Gly(2) ${ }^{*}$	0.299
\boldsymbol{Z}-C(7)	-0.078	Pro(1) ${ }^{* *}$	$1 \cdot 157$	Gly(2) ${ }^{\prime} *$	$0 \cdot 234$
$\boldsymbol{Z}-\mathrm{O}(1)^{*}$	$1 \cdot 225$	Pro(1) ${ }^{*}$	0.985	Pro(2) O (2)*	-2.266
		Gly(1) $\mathrm{C}_{\alpha}{ }^{*}$	$0 \cdot 002$	$\mathrm{Gly}(2) \mathrm{C}_{\alpha}{ }^{*}$	$0 \cdot 342$
				Pro(2)O(1)*	-1.464

*Atoms not included in the calculation of the best planes.
throughly overlapped with each other, even with respect to the side chain of the Leu residue. To make the comparison clearer, the internal rotation angles of the peptide chains were accumulated (Table 6) together with the calculated values in the similar peptide system (Venkatachalam, 1968). In Table 6, the (φ_{2}, ψ_{2}) and $\left(\varphi_{3}, \psi_{3}\right)$ values are the internal rotation angles of the

(a)

(c)

(b)

(d)

Fig. 7. Internal rotation angles of the $\mathrm{C}_{\alpha}-\mathrm{C}^{\prime}$ bond of proline residue. (a) Pro(1) and (b) Pro(2) residues in the present molecule; (c) that in tetrapeptide; (d) model used in the collagen structure.

(a)

(c)

(b)

(d)

Fig. 8. Drawings of the molecules projected on the special plane, defined by the atoms, C^{\prime} of $\mathrm{Gly}(1), \mathrm{C}_{\alpha}$ of $\operatorname{Pro(1)}$ and N of the leu residue. (a) Z-GPLG molecule; (b) cyclohexaglycyl; (c) Z-GPLGP molecule; (d) Ferrichrome A (the backbone of the ring).

Fig. 9. Interatomic short contacts (less than $3 \cdot 5 \AA$) in the chain.
second and third residues. $\mathrm{C}_{\alpha}^{1}-\mathrm{C}_{\alpha}^{4}$ is the distance between the C_{α} atoms of the first and fourth residue in the chain. In the cases of cyclic peptides, the equivalent estimations as mentioned before were made.

The structures of the peptide molecules so far established by the X-ray diffraction method can be classified in two groups as in Table 6. In the peptide molecules in Group I such as Z-GPLGP, Z-GPLG, cyclohexaglycyl and $\Gamma(\mathrm{Gly})_{4}$-(D-Ala $\left.)_{2}\right\rceil$, the average values of $\left(\varphi_{2}, \psi_{2}\right)$ and $\left(\varphi_{3}, \psi_{3}\right)$ are ($\left.113,152^{\circ}\right)$ and (82 , 188°). Although the latter two molecules consist mainly of a particular amino acid residue (glycine which does not have a C_{β} atom), it seems reasonable to include these molecules in group I. We call this conformation ' α - U-folding'. The conformation of CysH -Pro-Leu-GlyNH H_{2} (Low et al., 1969) seems to belong to this group, though details cannot yet be presented. Values (φ_{2}, ψ_{2}) in group I are those between the righthanded α-helix $\left(3 \cdot 6_{13}\right)$ and the δ-helix $\left(3 \cdot 0_{10}\right)$, while the $\left(\varphi_{3}, \psi_{3}\right)$ values are not observed in any well-defined conformations. These observed values agree roughly with calculated values. However, the distance, $\mathrm{C}_{\alpha}^{1}-\mathrm{C}_{\alpha}^{4}$, is observed to be about $5 \cdot 0 \AA$ for Z-GPLGP and Z GPLG and quite different from the calculated value, which is too small. This difference is probably due to the accumulation of small differences in the internal rotation angles. The same effect also occurs in cyclohexaglycyl.

We call the structure of Ferrichrome A a ' β - U-folding' conformation, in which (φ_{2}, ψ_{2}) and (φ_{3}, ψ_{3}) are about $\left(120,310^{\circ}\right)$ and $\left(260,280^{\circ}\right)$. In this group, the $\left(\varphi_{2}, \psi_{2}\right)$ values agree well with those in collagen and polyglycine II, and the (φ_{3}, ψ_{3}) values agree with those in γ-helix $\left(5 \cdot I_{17}\right)$. However, more experimental values are necessary to define the (φ_{2}, ψ_{2}) and (φ_{3}, ψ_{3}) values of this conformation. The $\mathrm{C}_{\alpha}^{1}-\mathrm{C}_{\alpha}^{4}$ distance in Ferrichrome A is too big for this type of conformation, and is probably due to the steric deformation by the rest of the residues in the ring.

The difference between these two folding conformations is seen in the ψ_{2} and φ_{3} values, both of which

Table 6. Parameters of the folding conformation

	φ_{2}	ψ_{2}	φ_{3}	ψ_{3}	$\mathrm{N}-\mathrm{H}-\mathrm{-}-\mathrm{O}$	$\mathrm{C}_{\alpha}^{1}-\mathrm{C}_{\alpha}^{4}$
Group I ${ }^{\text {a }}$						
Z-GPLGP	115°	$153{ }^{\circ}$	75°	188°	$3.00 \AA$	$5 \cdot 10$ Å
Z-GPLG	122	147	76	188	$2 \cdot 97$	$4 \cdot 97$
Average	119	150	76	188	2.98	$5 \cdot 04$
Calculated*	120	150	70	200	$2 \cdot 85$	$4 \cdot 40$
Cyclohexaglycyl	111	151	86	188	2.96	$5 \cdot 16$
	111	150	88	184	$3 \cdot 02$	
	111	150	85	187	3.03	$5 \cdot 16$
	112	149	87	188	3.09	
Average	111	150	87	187	$3 \cdot 03$	$5 \cdot 16$
Calculated*	110	150	90	190	$3 \cdot 10$	$4 \cdot 73$
$\left.\square(\mathrm{Gly})_{4}-(\mathrm{D}-\mathrm{ala})_{2}\right]$	110	165	74	196	$3.04 \dagger$	
	-114	-165	-49	-211	$3 \cdot 16 \ddagger$	
Average value§	113	152	82	188	3.02	
Group II						
Ferrichrome $A \dagger \dagger$	123°	312	262	279	2.98	$5 \cdot 61$
Calculated*	120	310	260	180	2.84	$5 \cdot 04$

* Calculated values are those given by Venkatachalam (1968).
\dagger (-Gly-Gly-) part in $\square(\text { Gly })_{4}-(\mathrm{D}-\mathrm{Ala})_{2}-$.
\ddagger (-D-Ala-D-Ala-) part in [-(Gly) ${ }_{4}-(\mathrm{D}-\mathrm{Ala})_{2}-7$.
§ In calculating these average values, the values of the (-D-Ala-D-Ala-) part in the $\left[-(\mathrm{Gly})_{4}-(\mathrm{D}-\mathrm{Ala})_{2}-7\right.$ molecule are excluded.
$\dagger \dagger$ Sequence is \square Orn-Orn-Orn-Ser-Ser-Gly \square and the folding part is (-Ser-Gly-).
differ by 180° as pointed out in the description of structures (1) and (4) in the previous section. The conformation, α - U-folding, is observed in myoglobin and lysozyme (observed values in them are not accurate enough to discuss in detail), and the β - U-folding is observed in lysozyme.

The comparison revealed another interesting feature: the chain of Z-GPLGP can be completely overlapped on the chain of cyclohexaglycyl to the extent of the second hydrogen bond. Agreement of the internal rotation angles in this region of the chain is very good. Considering that two hydrogen bonds in cyclohexaglycyl are equivalent bonds related by the centre of symmetry and only half of the molecule (three residues) is independent, the consistency of the chain with that in Z-GPLGP is of great interest. It is probably correct to consider that the conformation of Z-GPLGP is a stable and characteristic structure with two intrachain hydrogen bonds and with special values of internal rotation angles.

The structure of gramicidin S was proposed on the basis of the α-helix and β-structure by Schmidt et al. in 1957, but it seems interesting for us to re-examine its structure taking into account these folding structures. This specific conformation must have a relation to the folding part of the cross- β-structure. Furthermore, this type of conformation at the folding part of the peptide, observed in several small oligopeptides and even in proteins, may be reasonably classified as a term like α-helix or β-structure.

The authors are indebted to Professor Shumpei Sakakibara of this university for supplying the material

Fig. 10. Internal rotation angles of peptide chains. Definitions for these angles are those given by Edsall et al. (1966). The values in parentheses are those of Z-GPLG.
and advice about this project. Also we thank Professors Yoshio Sasada and Yukiteru Katsube for useful discussions during structure analysis, and the Computer Centre of the University of Tokyo for making computers available.

References

Ashida, T. (1967). The Universal Crystallographic Computing System I, p. 65. Edited by T. Sakural. Tokyo: Japan Crystallographic Association.
Ashida, T., Ueki, T., Tsukihara, T., Sugihara, A., Takano, T. \& Kakudo, M. (1971). To be published.
Blake, C. C. F., Mair, G. A., North, A. C. T., Phillips, D. C. \& Sarma, V. R. (1967). Proc. Roy. Soc. B167, 365.

Corey, R. B. \& Pauling, L. (1953). Proc. Roy. Soc. B141, 10.
Cowan, P. M. \& McGavin, S. (1955). Nature, Lond, 176, 501.

Edsall, J. T., Flory, P. L., Kendrew, J. C., Liquori, A., némethy, J. T., Ramachandran, G. N. \& Scheraga, H. A. (1966). J. Mol. Biol. 15, 399.

Fridrichsons, J. \& Mathieson, A. McL. (1962). Acta Cryst. 15, 569.
Hamaguchi, K. (1970). Private communication.
Hamilton, W. C. (1959). Acta Cryst. 12, 609.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kakudo, M., Sasada, Y., Katsube, Y., Sakakibara, S. \& Akabori, S. (1963). Aspects of Protein Structure, p. 69. Edited by G. N. Ramachandran. London and New York: Academic Press.
Karle, I. L., Gibson, J. W. \& Karle, J. (1970). J. Amer. Chem. Soc. 92, 3755.
Karle, I. L. \& Karle, J. (1963). Acta Cryst. 16, 969.
Kendrew, J. C. (1963). Science, 139, 1259.

Leung, Y. C. \& Marsh, R. E. (1958). Acta Cryst. 11, 17.
Low, B. W., Lovell, F. M. \& Rudko, A. D. (1969). Acta Cryst. A 25, (S 3), S 188.
Nagai, Y. \& Noda, H. (1959). Biochim. Biophys. Acta, 34, 298.

Nagai, Y., Sakakibara, S., Noda, H. \& Akabori, S. (1960). Biochim. Biophys. Acta, 37, 567.

Ramachandran, G. N. \& Sasisekharan, V. (1965). Biochim. Biophys. Acta, 109, 314.
Sakakibara, S. \& Nagai, Y. (1960). Bull. Chem. Soc. Japan, 33, 1537.
Sasada, Y. \& Kakudo, M. (1961). Acta Cryst. 14, 1305.
Sasada, Y., Tanaka, K., Ogawa, Y. \& Kakudo, M. (1961). Acta Cryst. 14, 326.

Schmidt, G. M. J., Hodgkin, D. C. \& Oughton, B. M. (1957). Biochem. J. 65, 744.

Ueki, T., Ashida, T., Kakudo, M., Sasada, Y. \& Katsube, Y. (1969). Acta Cryst. B25, 1840.
Venkatachalam, C. M. (1968). Biopolymers, 6, 1425.
Zalkin, A., Forrester, J. D. \& Templeton, D. H. (1966). J. Amer. Chem. Soc. 88, 1810.

Acta Cryst. (1972). B28, 2231

The Structure of 11,11-Difluoro-1,6-methano[10]annulene

By Carlo Maria Gramaccioli and Massimo Simonetta
Istituto di Chimica Fisica, Università, Via Saldini 50, 20133 Milano, Italy

(Received 11 September 1970)

Abstract

The crystal and molecular structure of 11,11-difluoro-1,6-methano[10]annulene has been determined and refined by least-squares methods. The crystals are orthorhombic, space group Pna2 ${ }_{1}$, with $a=9.233$, $b=13.235, c=7.055 \AA$ and four molecules per unit cell. Intensity data were collected visually from Weissenberg photographs. The solution of the phase problem was readily obtained by finding the orientation of a plausible molecular model with respect to the crystallographic axes through a systematic search of the Patterson synthesis around the origin; the position of the molecule in the unit cell was then found by molecular packing energy calculations. After refinement by least-squares, the final R index is 0.080 . The presence of fluorine atoms does not seem to affect the conformation of 1,6 methano[10]annulene; the distance $\mathrm{C}(1)-\mathrm{C}(6)$ is $2.25 \AA$, excluding any 'double norcaradiene' character for this compound, in agreement with chemical and spectroscopic evidence.

Introduction

In line with a recent interest in aromatic systems with $4 n+2 \pi$-electrons (n greater than 1) the chemistry of aromatic compounds with 10π-electrons has been extensively developed by Vogel and co-workers (Vogel, 1967; 1968a,b). An interesting property of 1,6-methano[10]annulene is the influence of substituents in the bridge (position 11) on the stability of the aromatic system (I). Chemical and spectroscopic (n.m.r.) evidence are in favour of the existence of a direct $C(1)-C(6)$ bond for the 11,11-dimethyl derivative which is consequently non-aromatic and has the socalled bisnorcaradiene structure (II). The situation for the 11,11-difluoro derivative seems

to be the opposite and the substance has the chemical character of an aromatic compound. An investigation of the structure of these two substances by X-ray diffraction has been suggested to us by Prof. Vogel.* As a first result, the structure of 11,11-difluoro-1,6methano[10]annulene has been solved and refined. Although the extensive thermal vibration does not permit a very high precision in determining the molecular geometry at room temperature, it is felt that the method here adopted for solving the structure might be interesting and the results are anyway fully adequate to prove the aromaticity of this compound.

Experimental

Crystals of 11,11-difluoro-1,6-methano[10]annulene are in the form of greenish needles, elongated along \mathbf{c}.

[^3]
[^0]: * Present address: Faculty of Engineering Science, Osaka University, Toyonaka, Japan.

[^1]: * In the present paper the numbering of the amino-acid residues is, from the amino terminal, Z-Gly(1)-Pro(1)-Leu-Gly(2)-Pro(2). The numbering of the atoms in serial manner, as listed in the first column in Table 1, is used in the sections of structure analysis and crystal structure. In the rest of the paper, the usual nomenclature of amino acid residues, as defined by Edsall, Flory, Kendrew, Liquori, Nemethy, Ramachandran \& Scheraga (1966), is adopted as listed in the last column of Table 1.

[^2]: * These parameters were used in the form of: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$.

[^3]: * We wish to thank Prof. Emmanuel Vogel for having suggested this problem and for having supplied us with good crystals of the substance.

